Termination w.r.t. Q of the following Term Rewriting System could not be shown:

Q restricted rewrite system:
The TRS R consists of the following rules:

plus(0, x) → x
plus(s(x), y) → s(plus(p(s(x)), y))
times(0, y) → 0
times(s(x), y) → plus(y, times(p(s(x)), y))
exp(x, 0) → s(0)
exp(x, s(y)) → times(x, exp(x, y))
p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))
tower(x, y) → towerIter(x, y, s(0))
towerIter(0, y, z) → z
towerIter(s(x), y, z) → towerIter(p(s(x)), y, exp(y, z))

Q is empty.


QTRS
  ↳ Overlay + Local Confluence

Q restricted rewrite system:
The TRS R consists of the following rules:

plus(0, x) → x
plus(s(x), y) → s(plus(p(s(x)), y))
times(0, y) → 0
times(s(x), y) → plus(y, times(p(s(x)), y))
exp(x, 0) → s(0)
exp(x, s(y)) → times(x, exp(x, y))
p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))
tower(x, y) → towerIter(x, y, s(0))
towerIter(0, y, z) → z
towerIter(s(x), y, z) → towerIter(p(s(x)), y, exp(y, z))

Q is empty.

The TRS is overlay and locally confluent. By [15] we can switch to innermost.

↳ QTRS
  ↳ Overlay + Local Confluence
QTRS
      ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

plus(0, x) → x
plus(s(x), y) → s(plus(p(s(x)), y))
times(0, y) → 0
times(s(x), y) → plus(y, times(p(s(x)), y))
exp(x, 0) → s(0)
exp(x, s(y)) → times(x, exp(x, y))
p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))
tower(x, y) → towerIter(x, y, s(0))
towerIter(0, y, z) → z
towerIter(s(x), y, z) → towerIter(p(s(x)), y, exp(y, z))

The set Q consists of the following terms:

plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
exp(x0, 0)
exp(x0, s(x1))
p(s(0))
p(s(s(x0)))
tower(x0, x1)
towerIter(0, x0, x1)
towerIter(s(x0), x1, x2)


Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

TOWERITER(s(x), y, z) → P(s(x))
TOWERITER(s(x), y, z) → TOWERITER(p(s(x)), y, exp(y, z))
PLUS(s(x), y) → PLUS(p(s(x)), y)
PLUS(s(x), y) → P(s(x))
P(s(s(x))) → P(s(x))
TOWER(x, y) → TOWERITER(x, y, s(0))
TIMES(s(x), y) → TIMES(p(s(x)), y)
TIMES(s(x), y) → P(s(x))
TOWERITER(s(x), y, z) → EXP(y, z)
EXP(x, s(y)) → EXP(x, y)
EXP(x, s(y)) → TIMES(x, exp(x, y))
TIMES(s(x), y) → PLUS(y, times(p(s(x)), y))

The TRS R consists of the following rules:

plus(0, x) → x
plus(s(x), y) → s(plus(p(s(x)), y))
times(0, y) → 0
times(s(x), y) → plus(y, times(p(s(x)), y))
exp(x, 0) → s(0)
exp(x, s(y)) → times(x, exp(x, y))
p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))
tower(x, y) → towerIter(x, y, s(0))
towerIter(0, y, z) → z
towerIter(s(x), y, z) → towerIter(p(s(x)), y, exp(y, z))

The set Q consists of the following terms:

plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
exp(x0, 0)
exp(x0, s(x1))
p(s(0))
p(s(s(x0)))
tower(x0, x1)
towerIter(0, x0, x1)
towerIter(s(x0), x1, x2)

We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
QDP
          ↳ EdgeDeletionProof

Q DP problem:
The TRS P consists of the following rules:

TOWERITER(s(x), y, z) → P(s(x))
TOWERITER(s(x), y, z) → TOWERITER(p(s(x)), y, exp(y, z))
PLUS(s(x), y) → PLUS(p(s(x)), y)
PLUS(s(x), y) → P(s(x))
P(s(s(x))) → P(s(x))
TOWER(x, y) → TOWERITER(x, y, s(0))
TIMES(s(x), y) → TIMES(p(s(x)), y)
TIMES(s(x), y) → P(s(x))
TOWERITER(s(x), y, z) → EXP(y, z)
EXP(x, s(y)) → EXP(x, y)
EXP(x, s(y)) → TIMES(x, exp(x, y))
TIMES(s(x), y) → PLUS(y, times(p(s(x)), y))

The TRS R consists of the following rules:

plus(0, x) → x
plus(s(x), y) → s(plus(p(s(x)), y))
times(0, y) → 0
times(s(x), y) → plus(y, times(p(s(x)), y))
exp(x, 0) → s(0)
exp(x, s(y)) → times(x, exp(x, y))
p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))
tower(x, y) → towerIter(x, y, s(0))
towerIter(0, y, z) → z
towerIter(s(x), y, z) → towerIter(p(s(x)), y, exp(y, z))

The set Q consists of the following terms:

plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
exp(x0, 0)
exp(x0, s(x1))
p(s(0))
p(s(s(x0)))
tower(x0, x1)
towerIter(0, x0, x1)
towerIter(s(x0), x1, x2)

We have to consider all minimal (P,Q,R)-chains.
We deleted some edges using various graph approximations

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
QDP
              ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

TOWERITER(s(x), y, z) → P(s(x))
PLUS(s(x), y) → PLUS(p(s(x)), y)
TOWERITER(s(x), y, z) → TOWERITER(p(s(x)), y, exp(y, z))
PLUS(s(x), y) → P(s(x))
TOWER(x, y) → TOWERITER(x, y, s(0))
TIMES(s(x), y) → P(s(x))
EXP(x, s(y)) → TIMES(x, exp(x, y))
TOWERITER(s(x), y, z) → EXP(y, z)
P(s(s(x))) → P(s(x))
TIMES(s(x), y) → TIMES(p(s(x)), y)
EXP(x, s(y)) → EXP(x, y)
TIMES(s(x), y) → PLUS(y, times(p(s(x)), y))

The TRS R consists of the following rules:

plus(0, x) → x
plus(s(x), y) → s(plus(p(s(x)), y))
times(0, y) → 0
times(s(x), y) → plus(y, times(p(s(x)), y))
exp(x, 0) → s(0)
exp(x, s(y)) → times(x, exp(x, y))
p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))
tower(x, y) → towerIter(x, y, s(0))
towerIter(0, y, z) → z
towerIter(s(x), y, z) → towerIter(p(s(x)), y, exp(y, z))

The set Q consists of the following terms:

plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
exp(x0, 0)
exp(x0, s(x1))
p(s(0))
p(s(s(x0)))
tower(x0, x1)
towerIter(0, x0, x1)
towerIter(s(x0), x1, x2)

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 5 SCCs with 7 less nodes.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
QDP
                    ↳ QDPOrderProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

P(s(s(x))) → P(s(x))

The TRS R consists of the following rules:

plus(0, x) → x
plus(s(x), y) → s(plus(p(s(x)), y))
times(0, y) → 0
times(s(x), y) → plus(y, times(p(s(x)), y))
exp(x, 0) → s(0)
exp(x, s(y)) → times(x, exp(x, y))
p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))
tower(x, y) → towerIter(x, y, s(0))
towerIter(0, y, z) → z
towerIter(s(x), y, z) → towerIter(p(s(x)), y, exp(y, z))

The set Q consists of the following terms:

plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
exp(x0, 0)
exp(x0, s(x1))
p(s(0))
p(s(s(x0)))
tower(x0, x1)
towerIter(0, x0, x1)
towerIter(s(x0), x1, x2)

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


P(s(s(x))) → P(s(x))
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
P(x1)  =  x1
s(x1)  =  s(x1)

Recursive Path Order [2].
Precedence:
trivial

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ PisEmptyProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

plus(0, x) → x
plus(s(x), y) → s(plus(p(s(x)), y))
times(0, y) → 0
times(s(x), y) → plus(y, times(p(s(x)), y))
exp(x, 0) → s(0)
exp(x, s(y)) → times(x, exp(x, y))
p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))
tower(x, y) → towerIter(x, y, s(0))
towerIter(0, y, z) → z
towerIter(s(x), y, z) → towerIter(p(s(x)), y, exp(y, z))

The set Q consists of the following terms:

plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
exp(x0, 0)
exp(x0, s(x1))
p(s(0))
p(s(s(x0)))
tower(x0, x1)
towerIter(0, x0, x1)
towerIter(s(x0), x1, x2)

We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PLUS(s(x), y) → PLUS(p(s(x)), y)

The TRS R consists of the following rules:

plus(0, x) → x
plus(s(x), y) → s(plus(p(s(x)), y))
times(0, y) → 0
times(s(x), y) → plus(y, times(p(s(x)), y))
exp(x, 0) → s(0)
exp(x, s(y)) → times(x, exp(x, y))
p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))
tower(x, y) → towerIter(x, y, s(0))
towerIter(0, y, z) → z
towerIter(s(x), y, z) → towerIter(p(s(x)), y, exp(y, z))

The set Q consists of the following terms:

plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
exp(x0, 0)
exp(x0, s(x1))
p(s(0))
p(s(s(x0)))
tower(x0, x1)
towerIter(0, x0, x1)
towerIter(s(x0), x1, x2)

We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
                  ↳ QDP
QDP
                  ↳ QDP
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

TIMES(s(x), y) → TIMES(p(s(x)), y)

The TRS R consists of the following rules:

plus(0, x) → x
plus(s(x), y) → s(plus(p(s(x)), y))
times(0, y) → 0
times(s(x), y) → plus(y, times(p(s(x)), y))
exp(x, 0) → s(0)
exp(x, s(y)) → times(x, exp(x, y))
p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))
tower(x, y) → towerIter(x, y, s(0))
towerIter(0, y, z) → z
towerIter(s(x), y, z) → towerIter(p(s(x)), y, exp(y, z))

The set Q consists of the following terms:

plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
exp(x0, 0)
exp(x0, s(x1))
p(s(0))
p(s(s(x0)))
tower(x0, x1)
towerIter(0, x0, x1)
towerIter(s(x0), x1, x2)

We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
QDP
                    ↳ QDPOrderProof
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

EXP(x, s(y)) → EXP(x, y)

The TRS R consists of the following rules:

plus(0, x) → x
plus(s(x), y) → s(plus(p(s(x)), y))
times(0, y) → 0
times(s(x), y) → plus(y, times(p(s(x)), y))
exp(x, 0) → s(0)
exp(x, s(y)) → times(x, exp(x, y))
p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))
tower(x, y) → towerIter(x, y, s(0))
towerIter(0, y, z) → z
towerIter(s(x), y, z) → towerIter(p(s(x)), y, exp(y, z))

The set Q consists of the following terms:

plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
exp(x0, 0)
exp(x0, s(x1))
p(s(0))
p(s(s(x0)))
tower(x0, x1)
towerIter(0, x0, x1)
towerIter(s(x0), x1, x2)

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


EXP(x, s(y)) → EXP(x, y)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
EXP(x1, x2)  =  x2
s(x1)  =  s(x1)

Recursive Path Order [2].
Precedence:
trivial

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ PisEmptyProof
                  ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

plus(0, x) → x
plus(s(x), y) → s(plus(p(s(x)), y))
times(0, y) → 0
times(s(x), y) → plus(y, times(p(s(x)), y))
exp(x, 0) → s(0)
exp(x, s(y)) → times(x, exp(x, y))
p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))
tower(x, y) → towerIter(x, y, s(0))
towerIter(0, y, z) → z
towerIter(s(x), y, z) → towerIter(p(s(x)), y, exp(y, z))

The set Q consists of the following terms:

plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
exp(x0, 0)
exp(x0, s(x1))
p(s(0))
p(s(s(x0)))
tower(x0, x1)
towerIter(0, x0, x1)
towerIter(s(x0), x1, x2)

We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
QDP

Q DP problem:
The TRS P consists of the following rules:

TOWERITER(s(x), y, z) → TOWERITER(p(s(x)), y, exp(y, z))

The TRS R consists of the following rules:

plus(0, x) → x
plus(s(x), y) → s(plus(p(s(x)), y))
times(0, y) → 0
times(s(x), y) → plus(y, times(p(s(x)), y))
exp(x, 0) → s(0)
exp(x, s(y)) → times(x, exp(x, y))
p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))
tower(x, y) → towerIter(x, y, s(0))
towerIter(0, y, z) → z
towerIter(s(x), y, z) → towerIter(p(s(x)), y, exp(y, z))

The set Q consists of the following terms:

plus(0, x0)
plus(s(x0), x1)
times(0, x0)
times(s(x0), x1)
exp(x0, 0)
exp(x0, s(x1))
p(s(0))
p(s(s(x0)))
tower(x0, x1)
towerIter(0, x0, x1)
towerIter(s(x0), x1, x2)

We have to consider all minimal (P,Q,R)-chains.